刘徽创造的割圆术计算方法,只用圆内接多边形面积,而无需外切形面积,从而简化了计算程序。同时,为解决圆周率问题,刘徽所运用的初步的极限概念和直曲转化思想,这在古代也是非常难能可贵的。
在刘徽之后,南北朝时期杰出数学家祖冲之,把圆周率推算到更加精确的程度,取得了极其光辉的成就。
刘徽割圆术的基本思想是,割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣。 就是说分割越细,误差就越小,无限细分就能逐步接近圆周率的实际值。他很清楚圆内接正多边形的边数越多,所求得的圆周率值越精确这一点。
刘徽用割圆的方法,从圆内接正六边形开始算起,将边数一倍一倍地增加,即12、24、48、96,因而逐个算出六边形、十二边形、二十四边形等的边长,这些数值逐步地逼近圆周率。
他做圆内接九十六边形时,求出的圆周率是3.14,这个结果已经比古率精确多了。他算到了圆内接正三千零七十二边形,得到圆周率的近似值为3.1416。
刘徽利用“幂”和“差幂”来代替对圆的外切近似,巧妙地避开了对外切多边形的计算,在计算圆面积的过程中收到了事半功倍的效果。
刘徽首创“割圆术”的方法,可以说他是我国古代极限思想的杰出代表,在数学史上占有十分重要的地位。他所得到的结果在当时世界上也是很先进的。
在刘徽之后,祖冲之所取得的圆周率数值可以说是圆周率计算的一个跃进。
据《隋书·律历志》记载,祖冲之确定了圆周率的不足近似值是3.1415926,过剩近似值是3.1415927,真值在这两个近似值之间。成为当时世界上最先进的成就。
本文为一点号作者原创,未经授权不得转载返回搜狐,查看更多